1 – De l'importance des unités <u>en physique-chimie</u>

1.1 Le Système International (S. I.)

Le Système International d'unités (S. I. en abrégé) est le seul utilisé. Il est constitué de unités de base, dont dérivent toutes les autres unités.

Grandeur physique	Unité (symbole)	Appelation (nom)
Longueur	m	mètre
Masse	kg	kilogramme
Temps	\mathbf{s}	seconde
Intensité	A	ampère
Quantité de matière	mol	mole
Luminosité	candela	cd
Température	K	kelvin

1.2 L'analyse dimensionnelle

L'analyse dimensionnelle consiste à vérifier que l'unité des deux membres de l'équation correspondent. Cela n'assure par que la formule littérale est correcte, mais c'est une vérification qui permet de déceler des erreurs.

1.3 Les formules littérales

Voici les formules littérales les plus communes de la physique-chimie. Certaines de ces formules ne seront révélées qu'en Première ou en Terminale; D'autres sont déjà connues depuis longtemps!

Grandeur	Formule	Unité
Surface		
- rectangle	$L\ell$	m^2
- disque	πR^2	m^2
- sphère	$4\pi R^2$	m^2
Volume		
- paralépipède	$L\ell h$	m^3
- sphère	$\frac{4}{3}\pi R^3$	m^3
Vitesse	$v = \frac{d}{\Delta t}$	$\mathrm{m/s}$
Accélération	$a = \frac{a}{\Delta t}$	$\mathrm{m/s^2}$
Force	F = ma	N
Travail	W = Fd	J
Puissance	$\mathcal{P}=rac{W}{\Delta t}$	W
Pression	$P = \frac{F}{S}$	Pa
Masse volumique	$ \rho = \frac{m}{V} $	${\rm kg/m^3}$
Densité	$d = \frac{\rho}{\rho_{\text{rau}}}$	-
Poids	P = mg	N
Quantité		
- définition	$n = \frac{N}{N_{ m A}}$	mol
- tous	$n = \frac{m}{M}$	mol
- liquides	$n = \frac{d\rho_{\rm eau}V}{M}$	mol
- gaz	$n = \frac{V}{V_{ m m}}$	mol
- solutés	n = CV	mol
Température	$T = \theta + 273, 15$	K
Fréquence	$f = \frac{1}{T}$	$_{\mathrm{Hz}}$
Indice	$n = \frac{c}{v}$	-

2 – Des formules dans tous les sens!

$$1. \ v = \frac{d}{\Delta t}$$

$$2. \ \rho = \frac{m}{V}$$

3.
$$P = m \cdot g$$

4.
$$f = \frac{1}{T}$$

$$5. \ n = \frac{m}{M}$$

$$6 F = P \cdot S$$

7.
$$n = C \cdot V$$

8.
$$\lambda = c \cdot T$$

9.
$$C_1 \cdot V_1 = C_2 \cdot V_2$$

10.
$$n_1 \cdot \sin i_1 = n_2 \sin i_2$$

- **b.** Pour chacune des formules, isoler alternativement chaque variable.
- **c.** Pour aller plus loin : par analyse dimensionnelle, déterminer les unités des constantes G et R dans les relations suivantes :

$$F = G \frac{m_1 m_2}{d^2}$$

$$PV = nRT$$